This article was authored by General Assembly’s Divya Venkatraman and originally published by GA here.
Data is everywhere
The amount of data captured and recorded in 2020 is approximately 50 zettabytes, i.e., 50 followed by 21 zeros(!) and it’s constantly growing. Other than data captured from social media platforms, as individuals, we are constantly using devices that measure our health by tracking the number of footsteps, heart rate, sleep, and other physiological signals more regularly. Data analytics has helped greatly to discover patterns in our day-to-day activities and gently nudge us towards better health via everyday exercise and improving our quality of sleep. Just like how we track our health, internet sensors are used on everyday devices such as refrigerators, washing machines, internet routers, lights etc., to not only operate them remotely but also to monitor their functional health and provide analytics that help with troubleshooting in case of failure.
Organizations are capturing data to better understand their products and help their consumers. Industrial plants today are installed with a variety of sensors (accelerometers, thermistors, pressure gauges) that constantly monitor high-valued equipment in order to track their performance and better predict downtime. As internet users, we’ve experienced the convenience that results from capturing our browsing data — better search results on search engines, personalized recommendation on ecommerce websites, structured and organized inboxes, etc. Each of these features is an outcome of data science techniques of information retrieval and machine learning applied on big data.
On the enterprise side, digital transformation such as digital payments and ubiquitous use of software and apps has propelled data generation. With a smart computer in every palm and a plethora of sensors both on commercial and industrial scale, the amount of data generated and captured will continue to explode. This constant generation of data drives new and innovative possibilities for organizations and their consumers through approaches and toolsets rooted in data science.